Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel

نویسندگان

  • R. Schwaiger
  • B. Moser
  • M. Dao
  • N. Chollacoop
  • S. Suresh
چکیده

Systematic experiments have been performed to investigate the rate sensitivity of deformation in fully dense nanocrystalline Ni using two different experimental techniques: depth-sensing indentation and tensile testing. Results from both types of tests reveal that the strain-rate sensitivity is a strong function of grain size. Specifically microcrystalline and ultra-fine crystalline pure Ni, with grain size range of 1 μm and 100–1000 nm, respectively, exhibit essentially rateindependent plastic flow over the range 3 × 10 4 to 3 × 10 1 s , whereas nanocrystalline pure Ni with a grain size of approximately 40 nm, exhibits marked rate sensitivity over the same range. A simple computational model, predicated on the premise that a rate-sensitive grain-boundary affected zone exists, is shown to explain the observed effect of grain size on the rate-dependent plastic response.  2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials

Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...

متن کامل

Direct observation of Lomer-Cottrell Locks during strain hardening in nanocrystalline nickel by in situ TEM

Strain hardening capability is critical for metallic materials to achieve high ductility during plastic deformation. A majority of nanocrystalline metals, however, have inherently low work hardening capability with few exceptions. Interpretations on work hardening mechanisms in nanocrystalline metals are still controversial due to the lack of in situ experimental evidence. Here we report, by us...

متن کامل

Similarity Relationships in Creep Contacts and Applications in Nanoindentation Tests

The study of indentation responses of rate-dependent (viscoplastic or creeping) solids has generally focused on the relationship between indentation hardness and an effective strain rate, which can be defined from a similarity transformation of the governing equations. The strain rate sensitivity exponent can be determined from the slope of a log-log plot of the hardness versus effective strain...

متن کامل

Influence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels

In this work, dynamic mechanical properties of three high-manganese steels with TRIP/TWIP or fully TWIP characteristics are studied. High strain rate experiments in the range of true strain rates between ~500 and 1800 /s are conducted using a dynamic torsional testing setup. All the three steels show a positive strain rate sensitivity in the intermediate range of strain rates (up to 500 /s). Bu...

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003